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Introduction

Finite-volume methods for discretizing transonic potential flow equations have proven

to be very flexible and accurate for both two and three dimensional problems. 0) Since

they only use local properties of the mapping, they allow decoupling of the grid generation

from the rest of the problem. A very effective method for solving the discretized equations

and converging to a solution is the multigrid-ADI technique (Ref. 2, 3). It has been

successfully applied to airfoil problems where O type, C type and slit mappings have been

used. Convergence rates for these cased are more than an order of magnitude faster than

with relaxation techniques.

In this report, we describe a method to extend the above methods, with the C type

mappings, to airfoil cascade problems.

Discussion

With our use of finite volume methods, currently available cascade mappings cml be

used. (4) The main difference between an airfoil and the cascade problem involves the oater

boundary conditions. For airfoils, Dirichlet conditions are imposed on this boundary: the

potential is set to the sum of the freestream and compressible vortex values:

¢oo= Uoox + Vooy + £ tan -1 # tan 6

where Uoo, Voo are the freestream velocity components, F is the circulation and

fl- (1- M_)½

where Moo is the freestream Mach number. The value of 1" is set by the Kutta condition

that there be no flow around the trailing edge. For the cascade problem, the location

of part of the outer boundary above the airfoil must match part below so that periodic

boundary conditions can be applied. On the upstream and downstream part of the bound-

ary, a potential corresponding to a freestream and an array of compressible vortices is

then imposed. On the upper and lower matching parts periodic conditions are enforced

(see Fig. 1). In Fig. 2 the mapped coordinate system is displayed with the relationships

required between conditions on different parts of the boundary, for a cascade with C grid

mapping. It can be seen that the periodicity conditions on the outer boundary are exactly
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the same as the continuity conditions across the cut, which is mapped to the lower bound-

ary of the computational domain. Thus, techniques for treating the latter are also useful

for treating the periodicity conditions.

The most straight-forward way of enforcing these conditions involves setting Dirichlet

conditions on one side of the boundary and Neumama on the other side, during each iter-

ation. The actual boundary values used would be determined from the previous iteration,

i.e., in Fig. 2, at iteration n, at point i on the boundary corresponding to the cut,

0_¢I "+1) _ ._(") i = 1,2, ,it_"-- vywi_i, ...

¢(.+1) _ ¢i.)t-i -- + r, i = 1,2,...,zt_

where F is a constant and I is the total number of boundary points. The second condition

is equivalent to

A(n+ 1) __ Oz_! n)Oxwi--i -- r,

This technique has been used successfully with relaxation methods. Effectively, it involves

solving a problem where the Dirichlet or Neumann conditions axe changing from iteration

to iteration. For multigrid methods, however, as recognized by Brandt (5), this technique

may not work. Each multigrid iteration, a smooth solution is generated that matches the

imposed boundary conditions. When these conditions axe changed at the next iteration,

there is no longer a smooth match and, effectively, large high frequency errors are created

along the boundary. If, for example, ¢i changes by 0(1), 0_¢i, the second derivative normal

will change by0 (_. This does not cause a problem if relaxationto the boundary

methods are used, since they are very effective at reducing high frequencing errors. With
/

multigrid methods, however, unless these errors are made small on the fine grid, when the

residual is transferred to the coarser grid a wrong coarse grid correction will be computed.

This will result in divergence or very slow convergence. Alternatively, if a large number

of fine grid iterations are used to reduce the error before transferring the residual, the

advantage of using a multigrid method is lost. When this simple matching technique was

tried for the airfoil case using a C mesh, the multigrid iteration converged very slowly.

To avoid this problem we developed a special boundary matching procedure. It in-

volves formulating a special boundary operator,

LS(¢) = Ag_fi- f,,

/, =

This is similar to the interior full potential operator, which can be expanded

L(¢) = A6_¢ + B_ + other terms

The same multigrid scheme that drives L(¢) to zero also is used to drive Ls(¢) to

zero. At convergence, then,

,5 ¢i 2=

-2-



Each iteration, in the far-field (i = 1,/), we set

_x¢i = 6.¢1-i.

Hence, at convergence, we achieve the desired result

Although this is not satisfied during each iteration, using this technique the boundary

residual only changes by at most 0(1) each iteration and is rapidly smoothed out by the

multigrid operation. Continuity of 0y¢ can also be enforced by driving an operator to

zero. The condition that Oy¢ be continuous is that there by no sources or sinks along the

boundary. This requirement is satisfied by driving the same operator, L(¢), used in the

interior of the domain to zero, since this operator expresses flux balance. The effectiveness

of the boundary operator technique is seen in Fig. 3a and 3b, where the convergence of a

lifting airfoil case, which requires boundary matching, is compared to that of non-lifting

case, which has fixed conditions across the cut. Also, the C mesh results described in the

Appendix use this technique. The same technique was used successfully in developing a

multigrid airfoil code with a slit mapping (Ref. 6). There, the boundary residual was used

to match conditions between two separate computational domains; one above the slit and

one below.

Results and Conclusions

The pressure distribution for a representative cascade solution is presented in Fig. 4.

The results of the blending method developed for the cascade grid generation are

described in the Appendix. The residual convergence rate for the cascade code for the

representative solution is given in Fig. 8 and the development of the circulation is given

in Fig. 7 of the Appendix. It can be seen that the code is very efficient for these types

of flows, and represents a very good, low cost means of computing inviscid, irrotational

cascade flows.

.
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A systematic procedure is presented for synthesizing a complex computational grid out of a

number of simpler "elementary" grids. This method is useful when a grid is required for a

region which, though complex, consists of a number of simpler sub-regions. Frequently, in
such cases, validated grid generation methods already exist for the sub-regions, such as the

individual lifting surfaces of an airplane. The procedure presented allows a smooth complex

grid to be generated which becomes exactly equal to each elementary grid as the surface

corresponding to that elementary grid is approached. In this way, the existing generation

methods do not have to be changed and can be used as "black boxes," whether they are

algebraic, partial differential equation based, or just given numerically. A number of examples
are described in detail. _ 1986AcademicPress,Inc.

1. INTRODUCTION

In many cases where a smooth computational grid is required, the boundary of

the computational domain can be decomposed into a number of pieces, each of

which is fairly simple. We suppose that an adequate grid can be easily generated for

each of these pieces, if considered by itself, and describe a method for blending these

"elementary" grids into one smooth composite grid which has all of the pieces as its

boundary. Examples where this technique can be used include external flow over an

entire aircraft, where simple methods exist for generating grids individually over

each of the lifting surfaces and the pieces of the body. Other examples include inter-

nal flows where a number of ducts or tubes join, and methods exist for generating

grids for each element taken separately. An important feature of the concept is that

it can be used recursively. Composite subgrids can first be formed from elementary

grids, using the method, then, the same method can be used to form larger com-

posite grids out of these individual subgrids. If algebraic methods are used to form

each elementary grid, which can often be done since each piece is simple, then the

entire grid generation procedure is algebraic, since the blending is non-iterative and

involves no partial differential equation solutions. Accordingly, where applicable, it

is a fast method suitable for interactive use. Also, if a partial differential equation is

to be solved for some physical quantity and an iterative method is used to solve a

set of discrete equations on the grid, which is usually the case, then at each iteration

the grid can be quickly regenerated and the,e is no need to store the entire grid

370
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BLENDING METHOD FOR GRID GENERATION 371

system. This feature can be especially important for large 3-dimensional problems.

This method is very different from other algebraic methods, such as those of

Eiseman [1]. Each elementary grid is taken to be previously determined, either by

algebraic methods, partial differential equation solution [2], or any other means.

These grids can be defined over the entire space, rather than just on surfaces as in

"transfinite interpolation" schemes.

An important feature :of the method is that it allows the grid designer to use

software packages and methods already developed or being developed by others

(which can be quite sophisticated and complex) for the elementary grids about each

piece of the problem. These can be used as "black boxes," and after each elementary

grid is generated the grid designer can blend them together. Also, after a composite,

complex grid is generated, if one of the pieces is later modified, only the single new

elementary grid need be recomputed and blended into the composite grid.

In this paper two types of problems will be treated. In the first, the elementary

pieces of the boundary are physically separated, and in the second they are con-

tiguous. The use of the method will be illustrated with several representative 2-

dimensional examples. There is no conceptual difference between 2- and 3-dimen-

sional formulations and results of current work on 3-dimensional grids will be

presented in a subsequent paper.

Since the method is local, and each piece only influences the grid in its vicinity,

local methods of controlling the grid can be formulated. This could be required, for

example, if resolution were inadequate or if grid lines were to cross. Some of these

methods will be described. It will be seen that advantages of the method include

simplicity and speed, even for complex geometries. Disadvantages include the lack

of guarantees against line crossing (although this can be made unlikely) and the

requirement that each elementary grid locally have the same topology.

2. THE BASIC METHOD

Consider a set of N grids, each spanning the same computational space and

approximately the same physical space. For simplicity, we define the computational

coordinates to be just the (integer) indices of the grids. Thus, in n dimensions we

have an n component vector, r,,,(I) (-(x,,,(i), y,,,(l), z,,,(I)) for n= 3) defined on

each grid (labeled m) as a function of the indices I ( -= (i,j, k) for n = 3). It is impor-

tant to think of the n components of r,,, as ordinary smooth functions defined in the

computational (I) space. Defining non-negative weighting functions P"(I), the

physical coordinates of the composite grid are then simply weighted sums of those

of the elementary grids:

The weighting functions are, in general, functions of all of the indices !, and are a

function of how close the point l is to the elementary surface segments. When I
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approaches some surface segment, say mr, then P"'(i) must approach 1 and all the

other Fs must approach 0 since there we must have

r_(l) -, r,,,(I).

Some of the "art" of using the method resides in the determination of the

functions P"(i). Since values of r,,,(I) which define smooth grids are determined

separately about each elementary surface, the P"(I) do not have to do as much

work as in an interpolation method where they typically completely determine one

of the coordinates. In the examples to be presented in the next sections, it will be

seen that very simple functions are sufficient. The main problems arise when grids

must be blended with very different values of r in certain regions of l near an

elementary surface. Then, care must be taken that a number of derivatives of P'(I)

are 0 as I approaches the elementary surface (ml), in addition to the value of P"'(I)

approaching 1. As more derivatives are made to go to 0, the region in ! space,

where re(I) approaches r,,,, becomes larger.

3. EXAMPLE 1--CASCADE "C" TRANSFORMATION

This simple example involves a single weighting function. The two surfaces to be

fitted by the computational grid are the aifoil surface, where normal velocity is set

to zero, and the outer surface, where periodic conditions are imposed at the sides

and far field conditions at the ends. A transonic potential flow solution was to be

computed on the grid using a multigrid algorithm' [3].

First, a vertical shearing is used to approximately straighten the airfoil. After the

grid is generated this shearing will be applied in reverse to all the grid points so that

the initial airfoil is recovered. The shearing function (of x) is a straight line in front

of the leading edge and behind the trailing edge, matching the slope and position of

the mean camber line there, and is an interpolating cubic function of x in between.

This function is simply subtracted from the initial airfoil coordinates and, after the

mappings are complete, added back to each of the grid points to generate the final

grid. After the initial shearing, a "C" mesh is generated about the airfoil (Fig. 1).

(The open trailing edge is a continuation of the initially rounded trailing edge and

is designed to simulate viscous effects.) This mapping involves a square root trans-

formation about a point inside the leading edge region and a shearing. It is a stan-

dard mapping for aircraft airfoils and is described in detail in i-4]. This is the first

grid. It has good properties near the airfoil surface but obviously is not suitable in

the outer region for imposing periodic boundary conditions. "

The second grid consists of a long Cartesian grid with parallel top and bottom

boundaries, capped with a semicircular piece (see Fig. 2). It has the same C mesh

_The development of the computer code for the cascade solution was supported by NASA Lewis

Research Center Grant NASA NAG 3-398.
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FIG. 1. Inner grid for sheared cascade airfoil.

topology as the grid in Fig. 1, but is ideally suited for imposing periodic boundary

conditions on the top and bottom segments and far-field conditions at the ends.

The internal grid lines join the upper and lower boundaries orthogonally, as

required if the grid is to be smooth when continued periodically (even when the

shearing function is added back). The only problem with the grid is that there is no
airfoil.

Our objective is to compute a grid that approaches grid 1 along one line (j = 1),

and grid 2 along the other three (j =Jmax, i = 1 and i = ima,) (see Fig. 3). Since there

•qb.-- 1

_J

X -'---'-_

FIG. 2. Outer grid for sheared cascade airfoil.
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are only two elementary grids, we have here a simple form for rc(I) with only a

single weighting function p(I):

r_(l) =p(l) r,(I) + (1 - p(I)) r2(i).

The constraints on p(I) are:

1. p(i)_ 1 asj_ 1, i not close to 1 or /max-

2. p(I)--+ 0 as j--*Jma_, or i_ 1 or i--+ima,,.

The main problem here concerns the points near the leading edge of the airfoil

for j near 1. If p is not very close to 1 for j = 2, 3,... then the (distant) points from

grid 2 will be significantly included and the final rc values will be very different from

,t
I -----"!_"

IJ

X_

FIG. 4. Blended c_;cade grid.
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FIG. 5. Final cascade grid without shearing.

those for/ = 1 (where p is exactly 1). There will thus be a large grid spacing between

points with j= 1 and j = 2, as well as between j= 2 and j= 3, etc. Accordingly, we

choose a function with several vanishing derivatives at j = I"

p(I}= [1 -a(j}] b(i)

a(j)=_ 2 ½[1 -cos(n_)]

b(i) = ½[I - cos(n/_}]

co(j)= (j-- l)/,d

/'/(i) = min(zl, i-- i, i.,.x - i}/zl

where A is a length scale, set equal to (Jr,,,,,,- l).

yt

I "-'-'-.--..Imb

tJ

X ..--.--IIb.

Fie. 6. Coarse cascade grid.



376 JOHN STEINHOFF

2. g

lm

Bo

_o

FIG. 7.

5

te _e _ 40 5e

ITERATION NO

Circulation development [or cascade solution.

The resultant grid is depicted in Fig. 4 and in Fig. 5 with additional stretching in

the x direction and the shearing function added. A coarser grid with _ the number

of cells in each direction is presented in Fig. 6 for clarity. The convergence of our

finite volume multigrid method for a transonic shock-free case is presented in Fig. 7

for circulation development and Fig. 8 for average residual decay (one fine grid

(128 × 16) iteration per multigrid cycle was used with a total of 5 grids). Besides

cascades, this mapping technique would obviously be useful for wind tunnel boun-

dary conditions.

4. EXAMPLE 2--WING-CANARD

As in the last example, there are "elementary" boundaries which are separated in

both computational and physical space. Here, we choose an "H" grid elementary

2,

g

-t.

-2
0

......... _ ......... _ ......... ! ......... ; ......... ;
tg 215 319 40 50

ITERATION NO

FIG. 8. Residual decay [or cascade solution.
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I ...............,1_.

FIG. 9. Computational wing/canard grid.

mapping for both the canard and wing. A detailed study of this mapping was

presented in [5] for a single airfoil, where it was shown that a particular transfor-

mation can be used to eliminate the singularity which normally arises at the leading

edge in this case. A compressible flow problem was solved on this grid and the

solution was shown to be accurate once this singularity was removed.

The objective here is to map the wing-canard and outer boundary to a com-

putational grid depicted in Fig. 9, using an elementary H mesh for the canard

depicted in Fig. 10 and for the wing in Fig. !1. In this figure, the canard is at zero

relative angle of attack. For non-zero relative angle of attack, the entire elementary

canard grid is just rotated in physical space before blending.

In this case there are four starting grids: an "outer" Cartesian one associated with

the outer boundaries, a wing and a canard grid, and an inner Cartesian grid.

The basic plan in this case is to generate a wing/canard inner grid with fairly

uniform grid size (except near the wing and canard), and then to blend this with an

, ITII -

-- 111

IlIIITT-I_ -- H-- -_L

J 1I I I J
I111111 I__LL-

X --.--D_

FIG. I0. Elementary grid for canard airfoil.
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"outer" grid with much larger spacing to develop far-field stretching. The elemen-

tary canard grid is labeled m = 1, and the elementary wing grid, m = 2. These are

first blended with a fine "inner" Cartesian grid {m---3) to get intermediate com-

posite grids (labeled 13, 23). These two are then blended to get an inner

wing/canard grid, labeled 123. Finally, to provide far field stretching, this grid is

blended with an elementary Cartesian grid (label 4) which has much larger grid

spacing.

First, an "inner" canard (wing) grid is computed by blending the canard (wing)

and inner Cartesian grid. The first blendings (13, 23) are done with a weighting

function

p'(I) = ½[1 - cos(ha"')] ½[ 1 - cos(rtl_"')]

where m = 1 for canard and 2 for wing, and

_-'(i) =0,

_"(i) = (i- i'_)l(i'_- ig'),

ot"(i) = 1,

_"(i) = (i T - i)/(i'j' - i7),

_"(i) =0,

i_< ig'

ig' < i < iT

° I'IPI

" "12117<i<_3

°I1PI

i_> z3

"/21 _ "P'I+IThe function tim(j) is defined in the same way, with ik Jk, k = O, 1 2, 3. Then, for

the inner (composite) canard and wing grids (rt3(I), r23(I)),

r.131 =pro(I) r,,,(I) + [I -pro(l)] r3(I )
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where rl(I), r2(I), and r3(I) are the canard, wing, and inner Cartesian grids, respec-

tively. In the grids r13(!) and r23(I) the canard or wing lies in the region

i7' <<.i <_ i 7; J'_ <_J <_JT.

In our case J2'"=j';'+ 1 and the line J=JT' forms the lower surface and j--./2" the

upper surface for iT>_ i >_iT. The two lines coincide in physical space for i < iT and

i> i_'. Also, the original element canard or wing grid lies in the region

"/'tl "tn ,

t o _< i _</3 , Jg' _<J _./3-<"'"

i

The generation of the (13) and (23) grids is just a small algebraic step in the

overall grid generation procedure: the elementary inner grid (3) is just a Cartesian

grid and a simple formula is used for the coordinate values. These grids are not

separately stored--the coordinate values are used as they are computed in the next

grid blending step. In the rest of this section it will be assumed that i I < i_; itt < i_;

i_ < i_, but i_ not necessarily < i_ (the canard and wing may overlap in i); similarly

that Jl <J_; Jll >J_; Jt2 <J_ but jl l not necessarily >j_.

The composite inner grid, r123(IL is defined to approach r_3(l) as j--,j_ (j_<j_);

and to approach r23(I ) as j--,j_ (j>_j_). For j>_j_ (upper part of grid) we have

r123(l)=rt3(l) (1)

while forj_<j_ (lower part of grid),

r123(l)=r23(l). (2)

We first define the distance functions

z,(l) = max(0,j I -j)

z2(l)=max(O,j-j_).

The function z_(I) is 0 where conditions (1) applies, and z2(I) is 0 where condition

(2) applies. We then define a single distance function (z) that is 0, where (1) applies

and 1 where (2) applies:

Z=ZI/(Z I "+ Z2).

Then, we finally have

where

rl2_(I) =p(z) r23(1 ) + [1 --p(z)] rt3(I),

p(z)= ½[1- cos(,tz)].

The grid rt23 is shown in Fig. 12.
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FK;. 12. Blended wing/canard grid (unstretched).

The purpose of the final blending is to stretch r_23 in the far field. We want the

final grid, r,.(I), to equal r_23(I) inside the region

i I _< i_< i_; j_ _<j_<j_.

Defining grid 4 to lie in the region i_ <_i<_ i_;j_ <_j <_j_;

zt = [(max(O, i-i_, i I -i)) _ + (max(O,j-j_,j_-j))_] _/_

z2 = [(min(i-i 4, i4_- i)) 2 + (min(j--j4,j 4 --j)}_)],/2,

z=z,/(z, + z2),

we have the final grid,

r,.(l) =plz) r4(I ) + [I -p(z)] r,23111,

where p(z) is defined as above. This is shown in Fig. 13 and the inner part expanded

tJ

x ----"_ I ---_

FIG. 13. Final wing/canard grid.



BLENDINGMETHOD FOR GRID GENERATION 381

,t

1lillllllll/// 
LIIIIIlJlll////h
Ulllqmm//aJ
ltllilllJll/lllllll

_IIIIIIIIIIIHIIIIIH

IIIIIII]]I|||IHIIIII]

iii1|1 I ]lJ|]]|l]lll/

|m

//,'//11111111 ,
_Ii'//1111/////_
II_'IIIIII//////_
_/_ ffllllllll_

'Ill _flllllL_

:'I"Z

............................ _;:__ -

x-_ i _

FZG. 14. Inner portion of final wing/canard grid.

lJ

in Fig. 14. It can be seen that the stretching is more efficient than with the conven-

tional product form where the grid lines are continued to the outer boundary with
t

the same spacing, as shown in Fig. 15.

It should be noted that there are a large number of ways of assembling the

elementary grids into the final grid. We chose here a simple step-by-step method

which is not necessarily the most efficient but perhaps is more instructive. Also,

even though the intermediate grids were presented separately, they need not be

generated separately. Even with the blending used here, all of the blending steps

could be done together for each grid point (i,j) before computing the next point, so

that only one pass through the grid need be made, and no intermediate grids need

be generated. Some of these intermediate grids are only shown for clarity.

J

Y
lJ

FIG. 15. Wing/canard grid with conventional stretching.
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5. EXAMPLE 3--CONTIGUOUS SEGMENTS

Here, we treat a set of smooth line segments as boundaries, so that the com-

putational region is bounded by generalized polygons in physical space. If each

elementary surface is a straight line, we choose each elementary grid to be a Car-

tesian grid; if it is curved, we choose another, simple grid that is curved. These are

oriented so that a segment of one of the coordinate lines coincides with the given

boundary segment. An example of the (block) type of grid that we treat in com-

putational space is shown in Fig. 16. Each segment of the inner polygon as well as

the outer boundary rectangle corresponds to a smooth line in physical space. Also,

either the values of i or the values ofj at the end points of each segment are equal,

so that the segments are either horizontal or vertical in computational space.

The spacing of each elementary grid is determined by the spacing parallel to the

boundary segment, and normal to it. The parallel spacing, ds, is just the physical

length of the segment divided by the number of cells along it. For a straight

segment;

As = [ (x2 - x, )2 + (Y2 - Y,)2] ,a/in2 _ n,I

where the subscript (1) refers to one end of the segment and (2) to the other, and n

is either i or j. (This assumes that there is uniform grid spacing along the segment,

which is not necessary for our method but is taken for simplicity.) The normal

spacing is input externally for each segment. Also, the i and j values of the segments

as well as the boundaries are the same in each elementary grid. That is, each

elementary grid has the same i, j limits but different values of x and y at each point.

| -.--=._.

FIG. 16. Computational grid for automobile grid.
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These values of x and y lie along a different elementary segment (in physical space)

for each grid, for the appropriate values of i and j. For a curved segment we can, for

example, start with a straight segment, generate the grid as above, and add a shear-

ing (to form the curved segment) to the entire Cartesian sub-grid as well as to the

boundary segment. Other methods can also be used to generate the subgrids.

As we approach some segment (k) in i= (i,j) space, the composite grid, re(i)

must approach that particular elementary grid, rk(i). Thus, we have

r,.(I) = I_'. P"(l) r,,,(I)l/_ P"'(I).

We choose a distance function from point I to each segment similar to that in the

last example:

_"= [ (max(0, i- i7, iT - i))2 + (max(O,j_jT,jl _j,,,))2] u2,

where we take

"_! ".! ° "/1'I "HI
_J2 •12 , Jl

Each z:" vanishes on segment m. We then generalize the formulae of the last section

to N segments instead of two. We define a "global" distance function for each

segment that is I when I approaches the segment (:_" _ 0) and 0 when I approaches

any other segment (:_-,2 _ 0, m2 _ m t ):

1/:_"
Z m --

L 1/_ k"

Then, we simply have

p"(I) = ½11+ cos(fez")].

The composite grid resulting from applying these formulae to a particular set of

segments is shown in Fig. 17, and an expanded view of the inner several grid lines

,t
J

IJ

X -------_- | -..----4_

FIG. 17. Automobile grid.
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yt

x ---'----.'l_ I --'------P-

Fro. 18. Inner portion of automobile grid.

in Fig. 18. In this example all segments are straight except one, which is a circular

arc. Although the spacing along each segment is constant (equal to the segment

length in physical space divided by the length in computational space) the normal

spacing is not: The cell height at the segment and on the grid line containing the

segment is half that of the cells away from the segment, for added accuracy at the

boundary. The code which generated these grids is less than 200 lines long, even

though it can treat a number of separate polygons (the outer boundary is treated as

just another polygon).

For generalization of this mapping, other boundary conforming elementary grids

can be used instead of the simple ones shown here. Also, grid bunching near and

normal to the segments can easily be implemented. In this case, a non-uniform

spacing along each segment should be used that approximately matches the

variable grid cell height normal to neighbouring segments.

6. CONCLUSION

A method of grid generation has been described that can be used to blend a num-

ber of elementary grids together into a smooth composite grid. If these elementary

grids have desirable properties near a set of grid boundaries, such as orthogonality,

then the composite grid c_in also be made to have them. This can be especially

useful when designing a grid for a complex object such as an airplane, where

methods already exist for generating good grids about each of the components. The

method is computationally fast and, depending on the elementary grids, can be

coded to recompute algebraically the entire grid for each iteration of some other

solution scheme, which requires the grid. In these cases the full grid need not be

stored in the computer, which can be an advantage in large 3-dimensional com-

putations.

An additional feature is the recursive property, that allows more complex grids to

be generated from simpler ones. This also allows "patches" to be blended into

regions where the original composite grid has undesirable properties, such as
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excessive skewness or "folding over." Also, as described, simple unified methods of

treating contiguous surface exist, as well as simple methods of refining the grid near

these surfaces.

Although we have described some examples, the true usefulness of this method

will only become apparent after it has been utilized in a large number of more com-

plex cases and modifications are found to cure the many problems that are likely to

e,iise.
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